Thin Films of Metal-Organic Framework Interfaces Obtained by Laser Evaporation

Author:

Rose Olivia L.ORCID,Bonciu AncaORCID,Marascu ValentinaORCID,Matei Andreea,Liu Qian,Rusen LaurentiuORCID,Dinca ValentinaORCID,Dinu Cerasela Zoica

Abstract

Properties such as large surface area, high pore volume, high chemical and thermal stability, and structural flexibility render zeolitic imidazolate frameworks (ZIFs) well-suited materials for gas separation, chemical sensors, and optical and electrical devices. For such applications, film processing is a prerequisite. Herein, matrix-assisted pulsed laser evaporation (MAPLE) was successfully used as a single-step deposition process to fabricate ZIF-8 films. By correlating laser fluency and controlling the specific transfer of lab-synthesized ZIF-8, films with user-controlled physical and chemical properties were obtained. Films’ characteristics were evaluated by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The analysis showed that frameworks of ZIF-8 can be deposited successfully and controllably to yield polycrystalline films. The deposited films maintained the integrity of the individual ZIF-8 framework, while undergoing minor crystalline and surface chemistry changes. No significant changes in particle size were observed. Our study demonstrated control over both the MAPLE deposition conditions and the outcome, as well as the suitability of the listed deposition method to create composite architectures that could potentially be used in applications ranging from selective membranes to gas sensors.

Funder

National Science Foundation

UEFISCDI

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3