Abstract
The construction of complex intertwined networks that provide fast transport pathways for ions/electrons is very important for electrochemical systems such as water splitting, but a challenge. Herein, a three dimensional (3-D) intertwined network of Cu2−xS/CNFs (x = 0 or 0.04) has been synthesized through the morphology-preserved thermal transformation of the intertwined PEG-b-P4VP/ HKUST-1 hybrid networks. The strong interaction between PEG chains and Cu2+ is the key to the successful assembly of PEG-b-P4VP nanofibers and HKUST-1, which inhibits the HKUST-1 to form individual crystalline particles. The obtained Cu2−xS/CNFs composites possess several merits, such as highly exposed active sites, high-speed electronic transmission pathways, open pore structure, etc. Therefore, the 3-D intertwined hierarchical network of Cu2−xS/CNFs displays an excellent electrocatalytic activity for HER, with a low overpotential (η) of 276 mV to reach current densities of 10 mA cm−2, and a smaller Tafel slope of 59 mV dec−1 in alkaline solution.
Funder
China Postdoctoral Science Foundation
Natural Science Foundation of Hunan Province
National Natural Science Foundation of China
Ph.D. research startup foundation of Central South University of Forestry and Technology
Subject
General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献