Nucleation and Growth-Controlled Facile Fabrication of Gold Nanoporous Structures for Highly Sensitive Surface-Enhanced Raman Spectroscopy Applications

Author:

Lee Eunji,Ryu SangwooORCID

Abstract

The fabrication of porous metal structures usually involves complicated processes such as lithography or etching. In this study, a facile and clean method based on thermal evaporation at high pressure is introduced, by which a highly porous, black colored structure of Au can be formed through the control of homogeneous nucleation and growth during evaporation. The deposited films have different morphologies, from columnar to nanoporous structures, depending on the working pressure. These porous structures consist of Au nanoparticle aggregates, and a large number of nano-gaps are found among the nanoparticles. Thus, these structures indicate a much higher intensity of surface-enhanced Raman spectroscopy (SERS) when compared with commercial SERS substrates. The SERS intensity depends on the working pressure and thickness. Even circumstances that can induce agglomeration of nanoparticle aggregates do not deteriorate the sensitivity of SERS. These nanoporous structures based on high-pressure thermal evaporation are expected to provide a new platform for the development of low-cost and highly sensitive chemical sensors.

Funder

Kyonggi University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3