Selection of Key Frames for 3D Reconstruction in Real Time

Author:

Koschel Alan,Müller Christoph,Reiterer Alexander

Abstract

Cameras play a prominent role in the context of 3D data, as they can be designed to be very cheap and small and can therefore be used in many 3D reconstruction systems. Typical cameras capture video at 20 to 60 frames per second, resulting in a high number of frames to select from for 3D reconstruction. Many frames are unsuited for reconstruction as they suffer from motion blur or show too little variation compared to other frames. The camera used within this work has built-in inertial sensors. What if one could use the built-in inertial sensors to select a set of key frames well-suited for 3D reconstruction, free from motion blur and redundancy, in real time? A random forest classifier (RF) is trained by inertial data to determine frames without motion blur and to reduce redundancy. Frames are analyzed by the fast Fourier transformation and Lucas–Kanade method to detect motion blur and moving features in frames to label those correctly to train the RF. We achieve a classifier that omits successfully redundant frames and preserves frames with the required quality but exhibits an unsatisfied performance with respect to ideal frames. A 3D reconstruction by Meshroom shows a better result with selected key frames by the classifier. By extracting frames from video, one can comfortably scan objects and scenes without taking single pictures. Our proposed method automatically extracts the best frames in real time without using complex image-processing algorithms.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3