LoRa Network-Based System for Monitoring the Agricultural Sector in Andean Areas: Case Study Ecuador

Author:

Rivera Guzmán Edgar FabiánORCID,Mañay Chochos Edison DavidORCID,Chiliquinga Malliquinga Mauricio Danilo,Baldeón Egas Paúl Francisco,Toasa Guachi Renato MauricioORCID

Abstract

This article focuses on the development of a system based on the long-range network (LoRa), which is used for monitoring the agricultural sector and is implemented in areas of the Andean region of Ecuador. The LoRa network is applied for the analysis of climatic parameters by monitoring temperature, relative humidity, soil moisture and ultraviolet radiation. It consists of two transmitter nodes and one receiver node, a LoRa Gateway with two communication channels for data reception and one for data transmission, and an IoT server. In addition, a graphical user interface has been developed in Thinger.io to monitor the crops and remotely control the actuators. The research conducted contains useful information for the deployment of a LoRa network in agricultural crops located in mountainous areas above 2910 m.a.s.l., where there are terrains with irregular orography, reaching a coverage of 50 hectares and a range distance of 875 m to the farthest point in the community of Chirinche Bajo, Ecuador. An average RSSI of the radio link of −122 dBm was obtained in areas with a 15% slope and 130 m difference in height according to the Gateway, where the presence of vegetation, eucalyptus trees and no line-of-sight generated interference to the radio signal. The success rate of PDR packet delivery with an SF of nine, had a better performance, with values of no less than 76% and 92% in uplink and downlink respectively. Finally, the technological gap is reduced, since the network reaches places where traditional technologies do not exist, allowing farmers to make timely decisions in the production process in the face of adverse weather events.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3