Performance Analysis and Constellation Design for the Parallel Quadrature Spatial Modulation

Author:

Mohaisen Manar,Holoubi Tasnim,Abuhmed TamerORCID

Abstract

Spatial modulation (SM) is a multiple-input multiple-output (MIMO) technique that achieves a MIMO capacity by conveying information through antenna indices, while keeping the transmitter as simple as that of a single-input system. Quadrature SM (QSM) expands the spatial dimension of the SM into in-phase and quadrature dimensions, which are used to transmit the real and imaginary parts of a signal symbol, respectively. A parallel QSM (PQSM) was recently proposed to achieve more gain in the spectral efficiency. In PQSM, transmit antennas are split into parallel groups, where QSM is performed independently in each group using the same signal symbol. In this paper, we analytically model the asymptotic pairwise error probability of the PQSM. Accordingly, the constellation design for the PQSM is formulated as an optimization problem of the sum of multivariate functions. We provide the proposed constellations for several values of constellation size, number of transmit antennas, and number of receive antennas. The simulation results show that the proposed constellation outperforms the phase-shift keying (PSK) constellation by more than 10 dB and outperforms the quadrature-amplitude modulation (QAM) schemes by approximately 5 dB for large constellations and number of transmit antennas.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3