Novel Approach to Manufacture an AUV Propeller by Additive Manufacturing and Error Analysis

Author:

Khaleed H. M. T.,Badruddin Irfan AnjumORCID,Saquib A. N.,Addas M. F.,Kamangar Sarfaraz,Yunus Khan T. M.

Abstract

Autonomous underwater vehicle (AUV) is an unmanned tether-free vehicle which is powered by battery or fuel cell. The weight of the AUV is a major issue to be decided when considering its performance. To manufacture a propeller that is lighter in weight and able to carry the pressure applied to the blades is an involving process. The present study investigates the performance of the propeller of an AUV, manufactured by additive manufacturing, using ABS plastic material. The propeller blade designed in SolidWorks was transferred to the CUBPRO (DUO), followed by setting the parameters for a 3D printing machine. A comparative study was carried out for ABS (Acrylonitrile Butadiene Styrene) material between the required dimensions and a 3D printed model dimension propeller blade. An error analysis was carried out and we observed that ABS material is the most suitable for an AUV propeller. A stress-strain analysis for the propeller was carried out using the Finite Element Method.

Funder

King Khalid University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference24 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3