Support Vector Machine-Based EMG Signal Classification Techniques: A Review

Author:

Toledo-Pérez Diana C.,Rodríguez-Reséndiz JuvenalORCID,Gómez-Loenzo Roberto A.ORCID,Jauregui-Correa J. C.ORCID

Abstract

This paper gives an overview of the different research works related to electromyographic signals (EMG) classification based on Support Vector Machines (SVM). The article summarizes the techniques used to make the classification in each reference. Furthermore, it includes the obtained accuracy, the number of signals or channels used, the way the authors made the feature vector, and the type of kernels used. Hence, this article also includes a compilation about the bands used to filter signals, the number of signals recommended, the most commonly used sampling frequencies, and certain features that can create the characteristics of the vector. This research gathers articles related to different kinds of SVM-based classification and other tools for signal processing in the field.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3