In-Network Learning: Distributed Training and Inference in Networks

Author:

Moldoveanu Matei12ORCID,Zaidi Abdellatif12ORCID

Affiliation:

1. Laboratoire d’Informatique Gaspard-Monge, Université Paris-Est, 77454 Marne-la-Vallée, France

2. Mathematical and Algorithmic Sciences Lab, Paris Research Center, Huawei Technologies, 92100 Boulogne-Billancourt, France

Abstract

In this paper, we study distributed inference and learning over networks which can be modeled by a directed graph. A subset of the nodes observes different features, which are all relevant/required for the inference task that needs to be performed at some distant end (fusion) node. We develop a learning algorithm and an architecture that can combine the information from the observed distributed features, using the processing units available across the networks. In particular, we employ information-theoretic tools to analyze how inference propagates and fuses across a network. Based on the insights gained from this analysis, we derive a loss function that effectively balances the model’s performance with the amount of information transmitted across the network. We study the design criterion of our proposed architecture and its bandwidth requirements. Furthermore, we discuss implementation aspects using neural networks in typical wireless radio access and provide experiments that illustrate benefits over state-of-the-art techniques.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference36 articles.

1. Zou, Z., Shi, Z., Guo, Y., and Ye, J. (2019). Object Detection in 20 Years: A Survey. arXiv.

2. The roles of supervised machine learning in systems neuroscience;Glaser;Prog. Neurobiol.,2019

3. Mutual-information-based registration of medical images: A survey;Pluim;IEEE Trans. Med. Imaging,2003

4. Reinforcement Learning in Robotics: A Survey;Kober;Int. J. Robot. Res.,2013

5. Vinyals, O., and Le, Q.V. (2015). A Neural Conversational Model. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3