Transformer Oil Quality Assessment Using Random Forest with Feature Engineering

Author:

Senoussaoui Mohammed El Amine,Brahami Mostefa,Fofana IssoufORCID

Abstract

Machine learning is widely used as a panacea in many engineering applications including the condition assessment of power transformers. Most statistics attribute the main cause of transformer failure to insulation degradation. Thus, a new, simple, and effective machine-learning approach was proposed to monitor the condition of transformer oils based on some aging indicators. The proposed approach was used to compare the performance of two machine-learning classifiers: J48 decision tree and random forest. The service-aged transformer oils were classified into four groups: the oils that can be maintained in service, the oils that should be reconditioned or filtered, the oils that should be reclaimed, and the oils that must be discarded. From the two algorithms, random forest exhibited a better performance and high accuracy with only a small amount of data. Good performance was achieved through not only the application of the proposed algorithm but also the approach of data preprocessing. Before feeding the classification model, the available data were transformed using the simple k-means method. Subsequently, the obtained data were filtered through correlation-based feature selection (CFsSubset). The resulting features were again retransformed by conducting the principal component analysis and were passed through the CFsSubset filter. The transformation and filtration of the data improved the classification performance of the adopted algorithms, especially random forest. Another advantage of the proposed method is the decrease in the number of the datasets required for the condition assessment of transformer oils, which is valuable for transformer condition monitoring.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference49 articles.

1. Artificial neural networks for predicting the gassing tendency under electrical discharge in insulating oil for extended time;Boudraa;J. Electr. Eng.,2014

2. Aging Study and Lifetime Estimation of Transformer Mineral Oil

3. Condition monitoring of in-service oil-filled transformers: Case studies and experience

4. Transformer oil condition monitoring;Pahlavanpour,1998

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stacked Ensemble Regression Model for Prediction of Furan;Energies;2023-11-19

2. Research on Recommended Technology of Power Transformer Disposal Case based on Knowledge Graph;2023 5th International Conference on Power and Energy Technology (ICPET);2023-07-27

3. Diagnosis of AD and DSV Winding Faults Based on FRA Method and Random Forest Algorithm;2023 IEEE 4th International Conference on Electrical Materials and Power Equipment (ICEMPE);2023-05-07

4. State-of-the-art review on asset management methodologies for oil-immersed power transformers;Electric Power Systems Research;2023-05

5. Investigation of Urgent Service and Detoxification Requirements on 14 11kv Oil-Immersed Transformers Due to Transient Overvoltages Using Yateks Approach.;2023 International Conference for Advancement in Technology (ICONAT);2023-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3