Abstract
Projects are rarely executed exactly as planned. Often, the actual duration of a project’s activities differ from the planned duration, resulting in costs stemming from the inaccurate estimation of the activity’s completion date. While monitoring a project at various inspection points is pricy, it can lead to a better estimation of the project completion time, hence saving costs. Nonetheless, identifying the optimal inspection points is a difficult task, as it requires evaluating a large number of the project’s path options, even for small-scale projects. This paper proposes an analytical method for identifying the optimal project inspection points by using information theory measures. We search for monitoring (inspection) points that can maximize the information about the project’s estimated duration or completion time. The proposed methodology is based on a simulation-optimization scheme using a Monte Carlo engine that simulates potential activities’ durations. An exhaustive search is performed of all possible monitoring points to find those with the highest expected information gain on the project duration. The proposed algorithm’s complexity is little affected by the number of activities, and the algorithm can address large projects with hundreds or thousands of activities. Numerical experimentation and an analysis of various parameters are presented.
Subject
General Physics and Astronomy
Reference23 articles.
1. A Guide to the Project Management Body of Knowledge,2017
2. Project Management: A Managerial Approach;Meredith,2008
3. Project Management: Processes, Methodologies, and Economics;Shtub,2017
4. The Handbook of Project-Based Management;Turner,1993
5. Optimal timing of project control points
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献