Convection Parametrization and Multi-Nesting Dependence of a Heavy Rainfall Event over Namibia with Weather Research and Forecasting (WRF) Model

Author:

Somses SieglindeORCID,Bopape Mary-Jane M.ORCID,Ndarana Thando,Fridlind AnnORCID,Matsui Toshihisa,Phaduli Elelwani,Limbo Anton,Maikhudumu Shaka,Maisha RobertORCID,Rakate Edward

Abstract

Namibia is considered to be one of the countries that are most vulnerable to climate change due to its generally dry climate and the percentage of its population that rely on subsistence agriculture for their livelihoods. Early-warning systems are an important aspect of adapting to climate change. Weather forecasting relies on the use of numerical weather prediction models and these need to be configured properly. In this study, we investigate the effects of using multi-nests and a convection scheme on the simulation of a heavy rainfall event over the north-western region of Kunene, Namibia. The event, which was associated with a cut-off low system, was short-lived and resulted in over 45 mm of rainfall in one hour. For the multi-nest, a 9 km grid-length parent domain is nested within the Global Forecast System (GFS) simulations, which in turn forces a 3 km grid spacing child domain. A different set of simulations are produced using a single nest of 3 km grid spacing, nested directly inside the GFS data. The simulations are produced with the convection scheme switched on and off. The impact of a single versus multi-nest is found to be small in general, with slight differences in the location of high rainfall intensity. Switching off the convection schemes results in high rainfall intensity and increased detail in the simulations, including when a grid spacing of 9 km is used. Using a grid spacing of 3 km with the convection scheme on, results in a loss of detail in the simulations as well as lower rainfall amounts. The study shows a need for different configurations to be tested before an optimum configuration can be selected for operational forecasting. We recommend further tests with different synoptic forcing and convection schemes to be conducted to identify a suitable configuration for Namibia.

Funder

African Academy of Sciences

Publisher

MDPI AG

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3