Effect of Silicate Additive on Structural and Electrical Properties of Germanium Nanowires Formed by Electrochemical Reduction from Aqueous Solutions

Author:

Eremina Anna S.ORCID,Gavrilin Ilya M.,Pokryshkin Nikolay S.,Kharin Alexander Yu.,Syuy Alexander V.,Volkov Valentin S.ORCID,Yakunin Valery G.,Bubenov Sergei S.,Dorofeev Sergey G.ORCID,Gavrilov Sergey A.ORCID,Timoshenko Victor Yu.ORCID

Abstract

Layers of germanium (Ge) nanowires (NWs) on titanium foils were grown by metal-assisted electrochemical reduction of germanium oxide in aqueous electrolytes based on germanium oxide without and with addition of sodium silicate. Structural properties and composition of Ge NWs were studied by means of the scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Raman spectroscopy. When sodium silicate was added to the electrolyte, Ge NWs consisted of 1–2 at.% of silicon (Si) and exhibited smaller mean diameter and improved crystallinity. Additionally, samples of Ge NW films were prepared by ultrasonic removal of Ge NWs from titanium foils followed with redeposition on corundum substrates with platinum electrodes. The electrical conductivity of Ge NW films was studied at different temperatures from 25 to 300 °C and an effect of the silicon impurity on the thermally activated electrical conductivity was revealed. Furthermore, the electrical conductivity of Ge NW films on corundum substrates exhibited a strong sensor response on the presence of saturated vapors of different liquids (water, acetone, ethanol, and isopropanol) in air and the response was dependent on the presence of Si impurities in the nanowires. The results obtained indicate the possibility of controlling the structure and electrical properties of Ge NWs by introducing silicate additives during their formation, which is of interest for applications in printed electronics and molecular sensorics.

Funder

Ministry of Science and Higher Education of Russian Federation

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3