Cement Composites with Graphene Nanoplatelets and Recycled Milled Carbon Fibers Dispersed in Air Nanobubble Water

Author:

Patrinou Anastasia I.,Tziviloglou Eirini,Varoutoglou Athanasios,Favvas Evangelos P.ORCID,Mitropoulos Athanasios C.,Kyzas George Z.ORCID,Metaxa Zoi S.ORCID

Abstract

The individual effect of nano- and micro-carbon-based fillers on the mechanical and the electrical properties of cement paste were experimentally examined in this study. The objective of the study was to separately examine the effects of size and morphology (platelets and fibers) of nano- and micro-reinforcement. Three different sizes of Graphene Nanoplatelets (GNPs), at contents of 0.05% and 0.20% and recycled milled carbon fibers (rCFs), at various dosages from 0.1–2.5% by weight of cement, were incorporated into the cementitious matrix. GNPs and rCFs were dispersed in water with air nanobubbles (NBs), an innovative method that, compared to common practice, does not require the use of chemicals or high ultrasonic energy. Compressive and bending tests were performed on GNPs- and rCFs-composites. The four-wire-method was used to evaluate the effect of the conductive fillers on the electrical resistivity of cement paste. The compressive and flexural strength of all the cementitious composites demonstrated a considerable increase compared to the reference specimens. Improvement of 269.5% and of 169% was observed at the compressive and flexural strength, respectively, at the GNPs–cement composites incorporating the largest lateral size GNPs at a concentration of 0.2% by weight of cement. Moreover, the rCFs–cement composites increased their compressive and flexural strength by 186% and 210%, respectively, compared to the reference specimens. The electrical resistivity of GNPs- and rCFs-composite specimens reduced up to 59% and 48%, respectively, compared to the reference specimens, which proves that the incorporation of GNPs and rCFs can create a conductive network within the cementitious matrix.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Critical Review on the Application of Recycled Carbon Fiber to Concrete and Cement Composites;Recycling;2024-02-07

2. Nano-reinforced Ternary Lime-Based Composites for Structural Health Monitoring of Cultural Heritage Monuments;Advanced Nondestructive and Structural Techniques for Diagnosis, Redesign and Health Monitoring for the Preservation of Cultural Heritage;2023-11-02

3. A review on the fresh properties, mechanical and durability performance of graphene-based cement composites;Materials Today: Proceedings;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3