Recent Progress on Graphene-Based Nanocomposites for Electrochemical Sodium-Ion Storage

Author:

Li MaiORCID,Zhu Kailan,Zhao Hanxue,Meng Zheyi

Abstract

In advancing battery technologies, primary attention is paid to developing and optimizing low-cost electrode materials capable of fast reversible ion insertion and extraction with good cycling ability. Sodium-ion batteries stand out due to their inexpensive price and comparable operating principle to lithium-ion batteries. To achieve this target, various graphene-based nanocomposites fabricate strategies have been proposed to help realize the nanostructured electrode for high electrochemical performance sodium-ion batteries. In this review, the graphene-based nanocomposites were introduced according to the following main categories: graphene surface modification and doping, three-dimensional structured graphene, graphene coated on the surface of active materials, and the intercalation layer stacked graphene. Through one or more of the above strategies, graphene is compounded with active substances to prepare the nanocomposite electrode, which is applied as the anode or cathode to sodium-ion batteries. The recent research progress of graphene-based nanocomposites for SIBs is also summarized in this study based on the above categories, especially for nanocomposite fabricate methods, the structural characteristics of electrodes as well as the influence of graphene on the performance of the SIBs. In addition, the relevant mechanism is also within the scope of this discussion, such as synergistic effect of graphene with active substances, the insertion/deintercalation process of sodium ions in different kinds of nanocomposites, and electrochemical reaction mechanism in the energy storage. At the end of this study, a series of strategies are summarized to address the challenges of graphene-based nanocomposites and several critical research prospects of SIBs that provide insights for future investigations.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3