High-Quality Dry Etching of LiNbO3 Assisted by Proton Substitution through H2-Plasma Surface Treatment

Author:

Aryal ArjunORCID,Stricklin Isaac,Behzadirad Mahmoud,Branch Darren,Siddiqui Aleem,Busani Tito

Abstract

The exceptional material properties of Lithium Niobate (LiNbO3) make it an excellent material platform for a wide range of RF, MEMS, phononic and photonic applications; however, nano-micro scale device concepts require high fidelity processing of LN films. Here, we reported a highly optimized processing methodology that achieves a deep etch with nearly vertical and smooth sidewalls. We demonstrated that Ti/Al/Cr stack works perfectly as a hard mask material during long plasma dry etching, where periodically pausing the etching and chemical cleaning between cycles were leveraged to avoid thermal effects and byproduct redeposition. To improve mask quality on X- and Y-cut substrates, a H2-plasma treatment was implemented to relieve surface tension by modifying the top surface atoms. Structures with etch depths as deep as 3.4 µm were obtained in our process across a range of crystallographic orientations with a smooth sidewall and perfect verticality on several crystallographic facets.

Funder

Department of Energy, Sandia Laboratories Academic Alliance

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3