Poly(Thiophene)/Graphene Oxide-Modified Electrodes for Amperometric Glucose Biosensing

Author:

Pilo Maria I.ORCID,Baluta SylwiaORCID,Loria Anna C.,Sanna GavinoORCID,Spano NadiaORCID

Abstract

The availability of fast and non-expensive analytical methods for the determination of widespread interest analytes such as glucose is an object of large relevance; this is so not only in the field of analytical chemistry, but also in medicinal and in food chemistry. In this context, electrochemical biosensors have been proposed in different arrangements, according to the mode of electron transfer between the bioreceptor and the electrode. An efficient immobilization of an enzyme on the electrode surface is essential to assure satisfactory analytical performances of the biosensor in terms of sensitivity, limit of detection, selectivity, and linear range of employment. Here, we report the use of a thiophene monomer, (2,5-di(2-thienyl)thieno [3,2-b]thiophene (dTT-bT), as a precursor of an electrogenerated conducting film to immobilize the glucose oxidase (GOx) enzyme on Pt, glassy carbon (GC), and Au electrode surfaces. In addition, the polymer film electrochemically synthetized on a glassy carbon electrode was modified with graphene oxide before the deposition of GOx; the analytical performances of both the arrangements (without and with graphene oxide) in the glucose detection were compared. The biosensor containing graphene oxide showed satisfactory values of linear dynamic range (1.0–10 mM), limit of detection (0.036 mM), and sensitivity (9.4 µA mM−1 cm−2). Finally, it was tested in the determination of glucose in fruit juices; the interference from fructose, saccharose, and ascorbic acid was evaluated.

Funder

University of Sassari

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3