Highly Concurrent TCP Session Connection Management System on FPGA Chip

Author:

Wang Ke12ORCID,Guo Yunfei12,Guo Zhichuan12

Affiliation:

1. National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of Sciences, No. 21, North Fourth Ring Road, Haidian District, Beijing 100190, China

2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, No. 19(A), Yuquan Road, Shijingshan District, Beijing 100049, China

Abstract

Transmission Control Protocol (TCP) is a connection-oriented data transmission protocol, and it is also the main communication protocol used for end-to-end data transmission in the current Internet. At present, the mainstream TCP protocol processing service is implemented by software running on the Central Processing Unit (CPU). However, with the rapid growth of transmission bandwidth and the number of connections, the software-based processing method is not ideal in terms of delay and throughput, and also affects the processing performance of the CPU in other applications such as virtualization services. Moreover, other hardware solutions can only support a limited number of TCP session connections. In order to improve the processing efficiency of the TCP protocol and achieve highly concurrent network services, this paper proposes a TCP offload engine (TOE) prototype system based on field programmable gate array (FPGA) chips. It not only provides hardware-based data path processing, but also realizes hardware management of large-scale TCP session connection status through a multi-level cache management mechanism. Studies have shown that this solution can support 100 Gbps high-performance throughput characteristics, and allow concurrent processing of hundreds to 250,000 TCP connection state hardware maintenance on a single network node, improving the overall performance of the network system.

Funder

Strategic Leadership Project of Chinese Academy of Sciences: SEANET Technology Standardization Research System Development

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference30 articles.

1. A survey on fpga support for the feasible execution of virtualized network functions;Niemiec;IEEE Commun. Surv. Tutorials,2019

2. Nfv anomaly detection: Case study through a security module;Bondan;IEEE Commun. Mag.,2022

3. Enhancing 5 g sdn/nfv edge with p4 data plane programmability;Paolucci;IEEE Netw.,2021

4. Hennessy, J., and Patterson, D. (2019). Computer Architecture, Morgan Kaufmann. [6th ed.].

5. (2023, January 10). Technical White Paper of Data Processing Unit. Available online: https://114.215.223.121/zkls/zkys/dpu_whitepaper.html.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3