Material Removal Characteristics of Spherical-Array-Focused Ultrasonic Abrasive Machining

Author:

Du Bo12,Wang Jinhu12ORCID,Yuan Julong12,Lyu Binghai12,Zhang Xinqian12,Zhang Chunyu3

Affiliation:

1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China

2. Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023, China

3. Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China

Abstract

To improve the ultrasonic energy and realize far-field ultrasonic abrasive machining of complex surfaces, a spherical-array-focused ultrasonic abrasive machining system was established. By combining ultrasonic field simulation, detection and a single-factor experiment, the influences of the ultrasonic generator current, abrasive concentration, and particle size on the material removal properties and surface quality evolution of quartz glass were investigated. When the current was less than 0.4 A, the material removal showed plastic removal at the nanoscale. When the current was more than 0.5 A, the cavitation phenomenon formed micron-scale impact removal traces on the workpiece surface. The increase in abrasive concentration increased the impact density and material removal rate, while excessive abrasive concentration increased the impeding effect between abrasive particles and reduced the material removal rate. Moreover, the increase in abrasive particle concentration enhanced heterogeneous cavitation nucleation, promoted the removal of abrasive impact materials under the action of a cavitation jet, and inhibited the removal of direct surface cavitation. The abrasive particle size affects the heterogeneous cavitation nucleation and the acceleration of the cavitation jet on abrasive particles, which affects the material removal rate and surface quality. By controlling the energy of the focused ultrasound and abrasive parameters, the plastic or brittle domain removal of quartz glass can be achieved at the micro- and nanoscales.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

State Key Laboratory of Mechanical System and Vibration

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3