Photonic-Assisted Scheme for Simultaneous Self-Interference Cancellation, Fiber Dispersion Immunity, and High-Efficiency Harmonic Down-Conversion

Author:

Li He1,Zhu Zihang1,Gao Congrui1,Wang Guodong1,Zhou Tao2,Li Xuan1,Meng Qingqing1ORCID,Zhou Yixiao1,Zhao Shanghong1

Affiliation:

1. College of Information and Navigation, Air Force Engineering University, Xi’an 710077, China

2. Key Laboratory of Electronic Information Control, Southwest China Research Institute of Electronic Equipment, Chengdu 610036, China

Abstract

A photonic approach to the cancellation of self-interference in the optical domain with fiber dispersion immunity and harmonic frequency down-conversion function is proposed based on an integrated, dual-parallel, dual-drive Mach–Zehnder modulator (DP-DMZM). A dual-drive Mach–Zehnder modulator (DMZM) is used as an optical interference canceller, which cancels the self-interference from the impaired signal before fiber transmission to avoid the effect of fiber transmission on the cancellation performance. Another DMZM is used to provide carrier-suppressed, local-oscillation (LO)-modulated, high-order double optical sidebands for harmonic frequency down-conversion to release the strict demand for high-frequency LO sources. By regulating the DC bias of the main modulator, the signal of interest (SOI) can be down-converted to the intermediated frequency (IF) band after photoelectric conversion with improved frequency-conversion efficiency, immunity to the fiber-dispersion-induced power-fading (DIPF) effect, and effective signal recovery. Theoretical analyses and simulation results show that the desired SOI in the X and K bands with a bandwidth of 500 MHz and different modulation formats can be down-converted to the IF frequency. The self-interference noise with the 2 GHz bandwidth is canceled, and successful signal recovery is achieved after a 10 km fiber transmission. The recovery performance of down-converted signals and the self-interference cancellation depth under different interference-to-signal ratios (ISRs) is also investigated. In addition, the compensation performance of DIPF is verified, and a 6 dB improvement in frequency conversion gain is obtained compared with previous work. The proposed scheme is compact, cost-effective, and thus superior in wideband self-interference cancellation, long-range signal transmission, and effective recovery of weak desired signals.

Funder

National Natural Science Foundation of China

National postdoctoral program for innovative talents

Project of science and technology new star of Shaanxi province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3