High-Figure-of-Merit Biosensing and Enhanced Excitonic Absorption in an MoS2-Integrated Dielectric Metasurface

Author:

Hajian Hodjat1ORCID,Rukhlenko Ivan D.23,Bradley A. Louise14ORCID,Ozbay Ekmel5

Affiliation:

1. School of Physics, CRANN and AMBER, Trinity College Dublin, D02 PN40 Dublin, Ireland

2. Institute of Photonics and Optical Science (IPOS), School of Physics, The University of Sydney, Camperdown, NSW 2006, Australia

3. Information Optical Technologies Centre, ITMO University, Saint Petersburg 197101, Russia

4. IPIC, Tyndall National Institute, T12 R5CP Cork, Ireland

5. Nanotechnology Research Center (NANOTAM), Institute of Materials Science and Nanotechnology (UNAM), Department of Physics, Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey

Abstract

Among the transitional metal dichalcogenides (TMDCs), molybdenum disulfide (MoS2) is considered an outstanding candidate for biosensing applications due to its high absorptivity and amenability to ionic current measurements. Dielectric metasurfaces have also emerged as a powerful platform for novel optical biosensing due to their low optical losses and strong near-field enhancements. Once functionalized with TMDCs, dielectric metasurfaces can also provide strong photon–exciton interactions. Here, we theoretically integrated a single layer of MoS2 into a CMOS-compatible asymmetric dielectric metasurface composed of TiO2 meta-atoms with a broken in-plane inversion symmetry on an SiO2 substrate. We numerically show that the designed MoS2-integrated metasurface can function as a high-figure-of-merit (FoM=137.5 RIU−1) van der Waals-based biosensor due to the support of quasi-bound states in the continuum. Moreover, owing to the critical coupling of the magnetic dipole resonances of the metasurface and the A exciton of the single layer of MoS2, one can achieve a 55% enhanced excitonic absorption by this two-port system. Therefore, the proposed design can function as an effective biosensor and is also practical for enhanced excitonic absorption and emission applications.

Funder

TUBITAK

Russian Science Foundation

Irish Research eLibrary

Science Foundation Ireland

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3