Application of Compact Folded-Arms Square Open-Loop Resonator to Bandpass Filter Design

Author:

Nwajana Augustine O.1ORCID,Obi Emenike Raymond2ORCID

Affiliation:

1. School of Engineering, Medway Campus, University of Greenwich, Chatham ME4 4TB, UK

2. Raysoft AssetAnalytics, Regina, SK S4N 7S1, Canada

Abstract

Folded-arms square open-loop resonator (FASOLR) is a variant of the conventional microstrip square open-loop resonator (SOLR) that facilitates further device size miniaturization by having the two arms of the conventional SOLR folded inwards. This paper highlights the benefits of this brand of compact SOLR by implementing a five-pole Chebyshev bandpass filter (BPF) using compact FASOLR. The test BPF is presented, with centre frequency of 2.2 GHz, fractional bandwidth of 10%, passband ripple of 0.04321 dB, and return loss of 20 dB. The design is implemented on a Rogers RT/Duroid 6010LM substrate with a dielectric constant of 10.7 and thickness of 1.27 mm. The filter device is manufactured and characterised, with the experimentation results being used to justify the simulation results. The presented measurement and electromagnetic (EM) simulation results demonstrate a good match. The EM simulation responses achieve a minimum insertion loss of 0.8 dB and a very good channel return loss of 22.6 dB. The measurement results, on the other hand, show a minimum insertion loss of 0.9 dB and a return loss of better than 19.2 dB. The filter component has a footprint of 36.08 mm by 6.74 mm (that is, 0.26 λg × 0.05 λg), with λg indicating the guided wavelength for the 50 Ohm microstrip line impedance at the centre frequency of the proposed fifth-order bandpass filter.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference23 articles.

1. Hong, J.-S. (2011). Microstrip Filters for RF/Microwave Applications, Wiley. [2nd ed.].

2. Band pass filter comparison of hairpin line and square open-loop resonator method for digital TV community;Prasetya;Bull. Electr. Eng. Inform.,2021

3. Microwave diplexer purely based on direct synchronous and asynchronous coupling;Nwajana;Radioengineering,2016

4. Mitic, M., Nedelchev, M., Kolev, A., and Marinkovic, Z. (2020). Proceedings of the 2020 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON), Pattaya, Thailand, 11–14 March 2020, IEEE.

5. Astuti, D.W., Perkasa, R.A., and Pahlevi, T.A. (2019). Proceedings of the 2019 IEEE 14th Malaysia International Conference on Communication (MICC), Selangor, Malaysia, 2–4 December 2019, IEEE.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3