Electrochemically Deposited MoS2 and MnS Multilayers on Nickel Substrates in Inverse Opal Structure as Supercapacitor Microelectrodes

Author:

Chiu Sheng-Kuei1ORCID,Chen Po-Yan1,Louh Rong-Fuh1

Affiliation:

1. Department of Materials Science and Engineering, Feng Chia University, Taichung 407102, Taiwan

Abstract

High-dispersion polystyrene (PS) microspheres with monodispersity were successfully synthesized by the non-emulsification polymerization method, and three-dimensional (3D) photonic crystals of PS microspheres were fabricated by electrophoretic self-assembly (EPSA). The metal nickel inverse opal structure (IOS) photonic crystal, of which the structural thickness can be freely adjusted via electrochemical deposition (ECD), and subsequently, MnS/MoS2/Ni-IOS specimens were also prepared by ECD. Excellent specific capacitance values (1880 F/g) were obtained at a charge current density of 5 A/g. The samples in this experiment were tested for 2000 cycles of cycle life and still retained a reasonably good level of 76.6% of their initial capacitance value. In this study, the inverse opal structure photonic crystal substrate was used as the starting point, and then the microelectrode material for the MnS/MoS2/Ni-IOS supercapacitor was synthesized. Our findings show that the MnS/MoS2/Ni-IOS microelectrode makes a viable technical contribution to the design and fabrication of high-performance supercapacitors.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3