Mixed Finite Element Formulation for Navier–Stokes Equations for Magnetic Effects on Biomagnetic Fluid in a Rectangular Channel

Author:

Kasiman Erwan HafiziORCID,Kueh Ahmad Beng HongORCID,Mohd Yassin Airil Yasreen,Amin Norsarahaida Saidina,Amran MugahedORCID,Fediuk RomanORCID,Kotov Evgenii Vladimirovich,Murali Gunasekaran

Abstract

The article presents the mixed finite element formulation for examining the biomagnetic fluid dynamics as governed by the Navier–Stokes equation, coupled with energy and magnetic expressions. Both ferrohydrodynamics and magnetohydrodynamics describe the additional magnetic effects. For model discretization, the Galerkin weighted residual method was performed. Departing from a good agreement with existing findings, a biomagnetic flow (blood) in a straight rectangular conduit was then simulated in the presence of a spatially changing magnetic distribution. By virtue of negligible spatial variation influence from the magnetic field, the effects of Lorentz force were not presently considered. It was further found that the model accurately exhibits the formation and distribution of vortices, temperature, and skin friction located adjacent to and remotely from the source of magnetic load following a rise in the magnetic intensity.

Funder

Advanced Digital Technologies

Publisher

MDPI AG

Subject

General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3