Abstract
This study investigates the mechanical and durability properties of fly ash-based engineered cementitious composites (ECC). The effect of various mineral additions, such as wheat husk ash (WHA), rice husk ash (RHA), glass powder (GP), and fibrillated polypropylene (PP) fibers, on mechanical performance, water absorption, and porosity was investigated. Furthermore, the durability of ECC specimens was assessed in terms of sorptivity, acid/sulfate attacks, electric resistivity (ER), rapid chloride penetration (RCPT), and ultrasonic pulse velocity (UPV). The results revealed higher mechanical strength, UPV, and ER values for RHA-based ECC. After 180 days of immersion in acid and sulfate solutions, RHA-based ECC showed a lower loss in compressive strength (23.21% and 1.07% in HCl and Na2SO4, respectively) relative to the control mix (44% and 7% in HCl and Na2SO4, respectively). Moreover, analytical characterizations such as X-ray diffraction (XRD), Fourier transform infrared (FTIR), Scanning Electron Microscopy (SEM), and Energy dispersive X-ray (EDX) analyses were also carried out to corroborate the mechanical and durability properties of ECC.
Funder
The research is partially funded by the Ministry of Science and Higher Education of the Russian Federation under the strategic academic leadership program 'Priority 2030'
Subject
General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献