Numerical Modeling of Transient Two-Phase Flow and the Coalescence and Breakup of Bubbles in a Continuous Casting Mold

Author:

Tian Yushi,Shi Pengzhao,Xu Lijun,Qiu Shengtao,Zhu Rong

Abstract

The multiphase flow and spatial distribution of bubbles inside a continuous casting (CC) mold is a popular research issue due to its direct impact on the quality of the CC slab. The behavior of bubbles in the mold, and how they coalesce and break apart, have an important influence on the flow pattern and entrapment of bubbles. However, due to the limitations of experiments and measurement methods, it is impossible to directly observe the multiphase flow and bubble distribution during the CC process. Thus, a three-dimensional mathematical model which combined the large eddy simulation (LES) turbulent model, VOF multiphase model, and discrete phase model (DPM) was developed to study the transient two-phase flow and spatial distribution of bubbles in a continuous casting mold. The interaction between the liquid and bubbles and the coalescence, bounce, and breakup of bubbles were considered. The measured meniscus speed and bubble diameter were in good agreement with the measured results. The meniscus speed increased first and then decreased from the nozzle to the narrow face, with a maximum value of 0.07 m/s, and appeared at 1/4 the width of the mold. The current mathematical model successfully predicted the transient asymmetric two-phase flow and completely reproduced the coalescence, bounce, and breakup of bubbles in the mold. The breakup mainly occurred near the bottom of the submerged entry nozzle (SEN) due to the strong turbulent motion of the molten steel after hitting the bottom of the SEN. The average bubble diameter was about 0.6 mm near the nozzle and gradually decreased to 0.05 mm from the nozzle to the narrow face. The larger bubbles floated up near the SEN due to the effect of their greater buoyancy, while the small bubbles were distributed discretely in the entire mold with the action of the molten steel jet. Overall, the bubbles were distributed in a fan shape. The largest concentration of bubbles was in the lower part of the SEN and the upper edge of the SEN outlet.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3