Abstract
Twin T-graphene (TTG) is a new two-dimensional carbon allotrope of graphene. Heteroatom co-doping is an effective method for the modulation of the physical and chemical properties of two-dimensional materials. This study explored the structural stability, electronic structures, and optical properties of boron and phosphorus co-doped TTG using first-principles calculations. TTG was doped with B and P atoms (BP) at different positions considering 13 different configurations. Pristine TTG has a band gap of 1.89 eV, and all BP co-doped TTG (TTG/BP) systems remain semiconducting with band gaps that gradually decrease with increasing doping concentration. For a given doping concentration, the TTG/BP-ortho systems had a narrower band gap than the corresponding TTG/BP-para systems. The TTG and TTG/BP systems exhibited significant optical anisotropy. In the infrared region, BP co-doping increased the absorption coefficient, and the reflectance and refractive index increased with increasing doping concentration, except for the vertical component of the TTG/BP-ortho system. In the visible region, the absorption coefficient, reflectance, and refractive index decreased with increasing doping concentration for the vertical component, and the peaks were red-shifted from the near-ultraviolet region to the visible region. In the near-ultraviolet region, the reflectance also decreased with increasing doping concentration. The BP co-doping concentration can regulate the electronic structures and optical properties of the TTG, showing that the BP co-doped TTG has potential for application in nanoelectronics and optoelectronics.
Funder
National Natural Science Foundation of China
Natural Science Basis Research Plan in the Shaanxi Province of China
Subject
General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献