Abstract
The near-field characteristics of a radially-variant vector beam (RVVB) are analyzed by using the vectorial angular spectrum method. The non-paraxial RVVB can be decomposed into the propagating wave and the evanescent wave in near field. The coherent superposition of the longitudinal and transverse components of the RVVB results in a three-dimensional (3D) profile of the spin angular momentum flux density (SAM-FD). The evanescent wave part dominates the near field of a highly non-paraxial RVVB. The longitudinal component has a large impact on the 3D shape of the optical SAM-FD. Therefore, the 3D SAM-FD configuration of the RVVB can be manipulated by choosing the initial states of polarization arrangement. In particular, the transverse SAM-FD with a spin axis orthogonal to the propagation direction offers a promising range of applications spanning from nanophotonics and plasmonics to biophotonics.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献