Objective Signal Analysis for Investigating Feasibility of Active Noise Cancellation in Hearing Screening

Author:

Cheng Hsiu-LienORCID,Han Ji-Yan,Zheng Wei-Zhong,Cheng Yen-Fu,Chu Yuan-ChiaORCID,Lin Chia-Mei,Chiang Ming-ChangORCID,Liao Wen-Huei,Lai Ying-HuiORCID

Abstract

With the development of active noise cancellation (ANC) technology, ANC has been used to mitigate the effects of environmental noise on audiometric results. However, objective evaluation methods supporting the accuracy of audiometry for ANC exposure to different levels of noise have not been reported. Accordingly, the audio characteristics of three different ANC headphone models were quantified under different noise conditions and the feasibility of ANC in noisy environments was investigated. Steady (pink noise) and non-steady noise (cafeteria babble noise) were used to simulate noisy environments. We compared the integrity of pure-tone signals obtained from three different ANC headphone models after processing under different noise scenarios and analyzed the degree of ANC signal correlation based on the Pearson correlation coefficient compared to pure-tone signals in quiet. The objective signal correlation results were compared with audiometric screening results to confirm the correspondence. Results revealed that ANC helped mitigate the effects of environmental noise on the measured signal and the combined ANC headset model retained the highest signal integrity. The degree of signal correlation was used as a confidence indicator for the accuracy of hearing screening in noise results. It was found that the ANC technique can be further improved for more complex noisy environments.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3