Abstract
A piezo-resistive muscle contraction (MC) sensor was used to assess the contractile properties of seven human skeletal muscles (vastus medialis, rectus femoris, vastus lateralis, gastrocnemius medialis, biceps femoris, erector spinae) during electrically stimulated isometric contraction. The sensor was affixed to the skin directly above the muscle centre. The length of the adjustable sensor tip (3, 4.5 and 6 mm) determined the depth of the tip in the tissue and thus the initial pressure on the skin, fatty and muscle tissue. The depth of the tip increased the signal amplitude and slightly sped up the time course of the signal by shortening the delay time. The MC sensor readings were compared to tensiomyographic (TMG) measurements. The signals obtained by MC only partially matched the TMG measurements, largely due to the faster response time of the MC sensor.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献