Pose and Focal Length Estimation Using Two Vanishing Points with Known Camera Position

Author:

Guo Kai1ORCID,Cao Rui1,Tian Ye1,Ji Binyuan1,Dong Xuefeng1,Li Xuyang1

Affiliation:

1. Northwest Institute of Nuclear Technology, Xi’an 710024, China

Abstract

This paper proposes a new pose and focal length estimation method using two vanishing points and a known camera position. A vanishing point can determine the unit direction vector of the corresponding parallel lines in the camera frame, and as input, the unit direction vector of the corresponding parallel lines in the world frame is also known. Hence, the two units of direction vectors in camera and world frames, respectively, can be transformed into each other only through the rotation matrix that contains all the information of the camera pose. Then, two transformations can be obtained because there are two vanishing points. The two transformations of the unit direction vectors can be regarded as transformations of 3D points whose coordinates are the values of the corresponding unit direction vectors. The key point in this paper is that our problem with vanishing points is converted to rigid body transformation with 3D–3D point correspondences, which is the usual form in the PnP (perspective-n-point) problem. Additionally, this point simplifies our problem of pose estimation. In addition, in the camera frame, the camera position and two vanishing points can form two lines, respectively, and the angle between the two lines is equal to the angle between the corresponding two sets of parallel lines in the world frame. When using this geometric constraint, the focal length can be estimated quickly. The solutions of pose and focal length are both unique. The experiments show that our proposed method has good performances in numerical stability, noise sensitivity and computational speed with synthetic data and real scenarios and also has strong robustness to camera position noise.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated phase-visibility modulating interferometry;Optics and Lasers in Engineering;2024-12

2. Research on the Vanishing Point Detection Method Based on an Improved Lightweight AlexNet Network for Narrow Waterway Scenarios;Journal of Marine Science and Engineering;2024-04-30

3. Fast pose and focal length estimation for camera using a single point correspondence;Fifteenth International Conference on Graphics and Image Processing (ICGIP 2023);2024-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3