DV-Hop Algorithm Based on Multi-Objective Salp Swarm Algorithm Optimization

Author:

Liu Weimin1,Li Jinhang1,Zheng Aiyun2,Zheng Zhi12ORCID,Jiang Xinyu1,Zhang Shaoning1

Affiliation:

1. College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, China

2. HUIDA Sanitary Ware Co., Ltd., Tangshan 063000, China

Abstract

The localization of sensor nodes is an important problem in wireless sensor networks. The DV-Hop algorithm is a typical range-free algorithm, but the localization accuracy is not high. To further improve the localization accuracy, this paper designs a DV-Hop algorithm based on multi-objective salp swarm optimization. Firstly, hop counts in the DV-Hop algorithm are subdivided, and the average hop distance is corrected based on the minimum mean-square error criterion and weighting. Secondly, the traditional single-objective optimization model is transformed into a multi-objective optimization model. Then, in the third stage of DV-Hop, the improved multi-objective salp swarm algorithm is used to estimate the node coordinates. Finally, the proposed algorithm is compared with three improved DV-Hop algorithms in two topologies. Compared with DV-Hop, The localization errors of the proposed algorithm are reduced by 50.79% and 56.79% in the two topology environments with different communication radii. The localization errors of different node numbers are decreased by 38.27% and 56.79%. The maximum reductions in localization errors are 38.44% and 56.79% for different anchor node numbers. Based on different regions, the maximum reductions in localization errors are 56.75% and 56.79%. The simulation results show that the accuracy of the proposed algorithm is better than that of DV-Hop, GWO-DV-Hop, SSA-DV-Hop, and ISSA-DV-Hop algorithms.

Funder

S&T Program of Hebei

Natural Science Foundation of Hebei Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3