Epichloë Increases Root Fungal Endophyte Richness and Alters Root Fungal Endophyte Composition in a Changing World

Author:

Garces Kylea R.ORCID,Sage Haley E.,Christian Natalie,Emery Sarah M.ORCID

Abstract

Plants harbor a variety of fungal symbionts both above- and belowground, yet little is known about how these fungi interact within hosts, especially in a world where resource availability is changing due to human activities. Systemic vertically transmitted endophytes such as Epichloë spp. may have particularly strong effects on the diversity and composition of later-colonizing symbionts such as root fungal endophytes, especially in primary successional systems. We made use of a long-term field experiment in Great Lakes sand dunes to test whether Epichloë colonization of the dune-building grass, Ammophila breviligulata, could alter fungal root endophyte species richness or community composition in host plants. We also tested whether nitrogen addition intensified the effects of Epichlöe on the root endophyte community. We found that Epichloë increased richness of root endophytes in Ammophila by 17% overall, but only shifted community composition of root endophytes under nitrogen-enriched conditions. These results indicate that Epichlöe acts as a key species within Ammophila, changing richness and composition of the root mycobiome and integrating above- and belowground mycobiome interactions. Further, effects of Epichloë on root endophyte communities were enhanced by N addition, indicating that this fungal species may become even more important in future environments.

Funder

NSF Graduate Research Fellowship

University of Louisville’s Summer Research Opportunity Program

NSF

National Parks Ecological Research Post-Doctoral Fellowship

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3