DhDIT2 Encodes a Debaryomyces hansenii Cytochrome P450 Involved in Benzo(a)pyrene Degradation—A Proposal for Mycoremediation

Author:

Padilla-Garfias FranciscoORCID,Sánchez Norma SilviaORCID,Calahorra Martha,Peña Antonio

Abstract

Pollutants, such as polycyclic aromatic hydrocarbons (PAHs), e.g., benzo(a)pyrene (BaP), are common components of contaminating mixtures. Such compounds are ubiquitous, extremely toxic, and they pollute soils and aquatic niches. The need for new microorganism-based remediation strategies prompted researchers to identify the most suitable organisms to eliminate pollutants without interfering with the ecosystem. We analyzed the effect caused by BaP on the growth properties of Candida albicans, Debaryomyces hansenii, Rhodotorula mucilaginosa, and Saccharomyces cerevisiae. Their ability to metabolize BaP was also evaluated. The aim was to identify an optimal candidate to be used as the central component of a mycoremediation strategy. The results show that all four yeast species metabolized BaP by more than 70%, whereas their viability was not affected. The best results were observed for D. hansenii. When an incubation was performed in the presence of a cytochrome P450 (CYP) inhibitor, no BaP degradation was observed. Thus, the initial oxidation step is mediated by a CYP enzyme. Additionally, this study identified the D. hansenii DhDIT2 gene as essential to perform the initial degradation of BaP. Hence, we propose that D. hansenii and a S. cerevisiae expressing the DhDIT2 gene are suitable candidates to degrade BaP in contaminated environments.

Funder

DGAPA, Universidad Nacional Autónoma de México

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Reference75 articles.

1. ATSDR Toxicological Profile for Polycyclic Aromatic Hydrocarbons, 1995.

2. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A Review;Ghosal;Front. Microbiol.,2016

3. Microbial metabolism of polycyclic aromatic hydrocarbons;Cerniglia;Adv. Appl. Microbiol.,1984

4. Bioremediation and microbial metabolism of benzo(a)pyrene;Ostrem Loss;Mol. Microbiol.,2018

5. Bukowska, B., Mokra, K., and Michałowicz, J. Benzo[a]pyrene—Environmental Occurrence, Human Exposure, and Mechanisms of Toxicity. Int. J. Mol. Sci., 2022. 23.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3