Multitier Web System Reliability: Identifying Causative Metrics and Analyzing Performance Anomaly Using a Regression Model

Author:

Kim Sundeuk12ORCID,Kim Jong Seon3,In Hoh Peter1ORCID

Affiliation:

1. Department of Computer Science, Korea University, Seoul 02841, Republic of Korea

2. Platform Planning Group, Samsung SDS, Seoul 05510, Republic of Korea

3. MSP Development Group, Samsung SDS, Seoul 05510, Republic of Korea

Abstract

With the development of the Internet and communication technologies, the types of services provided by multitier Web systems are becoming more diverse and complex compared to those of the past. Ensuring a continuous availability of business services is crucial for multitier Web system providers, as service performance issues immediately affect customer experience and satisfaction. Large companies attempt to monitor the system performance indicator (SPI) that summarizes the status of multitier Web systems to detect performance anomalies at an early stage. However, the current anomaly detection methods are designed to monitor a single specific SPI. Moreover, the existing approaches consider performance anomaly detection and its root cause analysis separately, thereby aggravating the burden of resolving the performance anomaly. To support the system provider in diagnosing the performance anomaly, we propose an advanced causative metric analysis (ACMA) framework. First, we draw out 191 performance metrics (PMs) closely related to the target SPI. Among these PMs, the ACMA determines 62 vital PMs that have the most influence on the variance of the target SPI using several statistical methods. Then, we implement a performance anomaly detection model to identify the causative metrics (CMs) between the vital PMs using random forest regression. Even if the target SPI changes, our detection model does not require any change in its model structure and can derive closely related PMs of the target SPI. Based on our experiments, wherein we applied the ACMA to the business services in an enterprise system, we observed that the proposed ACMA could correctly detect various performance anomalies and their CMs.

Funder

Blockchain Research Institute(BRI) of Korea University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3