Abstract
Investment decisions usually involve the assessment of more than one financial asset or investment project (real asset). The most appropriate way to analyze the viability of a real asset is not to study it in isolation but as part of a portfolio with correlations between the input variables of the projects. This study proposes an optimization methodology for a portfolio of investment projects with real options based on maximizing the Omega performance measure. The classic portfolio optimization methodology uses the Sharpe ratio as the objective function, which is a function of the mean-variance of the returns of the portfolio distribution. The advantage of using Omega as an objective function is that it takes into account all moments of the portfolio’s distribution of returns or net present values (NPVs), not restricting the analysis to its mean and variance. We present an example to illustrate the proposed methodology, using the Monte Carlo simulation as the main tool due to its high flexibility in modeling uncertainties. The results show that the best risk-return ratio is obtained by optimizing the Omega measure.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献