Abstract
Mechanisms that convert a mechanical signal into a biochemical response in an atrophied skeletal muscle remain poorly understood. The aims of the study were to evaluate a temporal response of anabolic signaling and protein synthesis (PS) to eccentric contractions (EC) in rat soleus during hindlimb unloading (HU); and to assess a possible role of stretch-activated ion channels (SAC) in the propagation of a mechanical signal to mTORC1 following HU. Following HU, an isolated soleus was subjected to EC. Upon completion of EC, muscles were collected for western blot analyses to determine the content/phosphorylation of the key anabolic markers. We found that a degree of EC-induced p70S6K phosphorylation and the rate of PS in the soleus of 3- and 7-day unloaded rats was significantly less than that in control. A decrease in EC-induced phosphorylation of p70S6K, RPS6 and PS in the 7-day unloaded soleus treated with SAC inhibitor did not differ from that of the 7-day unloaded soleus without SAC blockade. The results of the study suggest that (i) HU results in a blunted anabolic response to a bout of EC, (ii) attenuation of mTORC1-signaling and PS in response to EC in unloaded soleus may be associated with inactivation of SAC.
Funder
Russian Foundation for Basic Research
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献