RPITER: A Hierarchical Deep Learning Framework for ncRNA–Protein Interaction Prediction

Author:

Peng Cheng,Han Siyu,Zhang Hui,Li YingORCID

Abstract

Non-coding RNAs (ncRNAs) play crucial roles in multiple fundamental biological processes, such as post-transcriptional gene regulation, and are implicated in many complex human diseases. Mostly ncRNAs function by interacting with corresponding RNA-binding proteins. The research on ncRNA–protein interaction is the key to understanding the function of ncRNA. However, the biological experiment techniques for identifying RNA–protein interactions (RPIs) are currently still expensive and time-consuming. Due to the complex molecular mechanism of ncRNA–protein interaction and the lack of conservation for ncRNA, especially for long ncRNA (lncRNA), the prediction of ncRNA–protein interaction is still a challenge. Deep learning-based models have become the state-of-the-art in a range of biological sequence analysis problems due to their strong power of feature learning. In this study, we proposed a hierarchical deep learning framework RPITER to predict RNA–protein interaction. For sequence coding, we improved the conjoint triad feature (CTF) coding method by complementing more primary sequence information and adding sequence structure information. For model design, RPITER employed two basic neural network architectures of convolution neural network (CNN) and stacked auto-encoder (SAE). Comprehensive experiments were performed on five benchmark datasets from PDB and NPInter databases to analyze and compare the performances of different sequence coding methods and prediction models. We found that CNN and SAE deep learning architectures have powerful fitting abilities for the k-mer features of RNA and protein sequence. The improved CTF coding method showed performance gain compared with the original CTF method. Moreover, our designed RPITER performed well in predicting RNA–protein interaction (RPI) and could outperform most of the previous methods. On five widely used RPI datasets, RPI369, RPI488, RPI1807, RPI2241 and NPInter, RPITER obtained A U C of 0.821, 0.911, 0.990, 0.957 and 0.985, respectively. The proposed RPITER could be a complementary method for predicting RPI and constructing RPI network, which would help push forward the related biological research on ncRNAs and lncRNAs.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3