Abstract
Nanotechnology was well developed during past decades and implemented in a broad range of industrial applications, which led to an inevitable release of nanomaterials into the environment and ecosystem. Silver nanoparticles (AgNPs) are one of the most commonly used nanomaterials in various fields, especially in the agricultural sector. Plants are the basic component of the ecosystem and the most important source of food for mankind; therefore, understanding the impacts of AgNPs on plant growth and development is crucial for the evaluation of potential environmental risks on food safety and human health imposed by AgNPs. The present review summarizes uptake, translocation, and accumulation of AgNPs in plants, and exemplifies the phytotoxicity of AgNPs on plants at morphological, physiological, cellular, and molecular levels. It also focuses on the current understanding of phytotoxicity mechanisms via which AgNPs exert their toxicity on plants. In addition, the tolerance mechanisms underlying survival strategy that plants adopt to cope with adverse effects of AgNPs are discussed.
Funder
National Institute of Education
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
344 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献