Hydrodynamic and Electrophoretic Properties of Trastuzumab/HER2 Extracellular Domain Complexes as Revealed by Experimental Techniques and Computational Simulations

Author:

Ramos Javier,Vega Juan Francisco,Cruz Victor,Sanchez-Sanchez Eduardo,Cortes Javier,Martinez-Salazar Javier

Abstract

The combination of hydrodynamic and electrophoretic experiments and computer simulations is a powerful approach to study the interaction between proteins. In this work, we present hydrodynamic and electrophoretic experiments in an aqueous solution along with molecular dynamics and hydrodynamic modeling to monitor and compute biophysical properties of the interactions between the extracellular domain of the HER2 protein (eHER2) and the monoclonal antibody trastuzumab (TZM). The importance of this system relies on the fact that the overexpression of HER2 protein is related with the poor prognosis breast cancers (HER2++ positives), while the TZM is a monoclonal antibody for the treatment of this cancer. We have found and characterized two different complexes between the TZM and eHER2 proteins (1:1 and 1:2 TZM:eHER2 complexes). The conformational features of these complexes regulate their hydrodynamic and electrostatic properties. Thus, the results indicate a high degree of molecular flexibility in the systems that ultimately leads to higher values of the intrinsic viscosity, as well as lower values of diffusion coefficient than those expected for simple globular proteins. A highly asymmetric charge distribution is detected for the monovalent complex (1:1 complex), which has strong implications in correlations between the experimental electrophoretic mobility and the modeled net charge. In order to understand the dynamics of these systems and the role of the specific domains involved, it is essential to find biophysical correlations between dynamics, macroscopic transport and electrostatic properties. The results should be of general interest for researchers working in this area.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3