Nonparametric Causal Structure Learning in High Dimensions

Author:

Chakraborty Shubhadeep,Shojaie Ali

Abstract

The PC and FCI algorithms are popular constraint-based methods for learning the structure of directed acyclic graphs (DAGs) in the absence and presence of latent and selection variables, respectively. These algorithms (and their order-independent variants, PC-stable and FCI-stable) have been shown to be consistent for learning sparse high-dimensional DAGs based on partial correlations. However, inferring conditional independences from partial correlations is valid if the data are jointly Gaussian or generated from a linear structural equation model—an assumption that may be violated in many applications. To broaden the scope of high-dimensional causal structure learning, we propose nonparametric variants of the PC-stable and FCI-stable algorithms that employ the conditional distance covariance (CdCov) to test for conditional independence relationships. As the key theoretical contribution, we prove that the high-dimensional consistency of the PC-stable and FCI-stable algorithms carry over to general distributions over DAGs when we implement CdCov-based nonparametric tests for conditional independence. Numerical studies demonstrate that our proposed algorithms perform nearly as good as the PC-stable and FCI-stable for Gaussian distributions, and offer advantages in non-Gaussian graphical models.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference35 articles.

1. Lauritzen, S.L. (1996). Graphical Models, Oxford University Press.

2. Maathuis, M., Drton, M., Lauritzen, S., and Wainwright, M. (2019). Handbook of Graphical Models, CRC Press.

3. Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation, Prediction, and Search, 2nd ed, The MIT Press.

4. Learning high-dimensional directed acyclic graphs with latent and selection variables;Ann. Stat.,2012

5. Spirtes, P. (2001, January 3–6). An anytime algorithm for causal inference. Proceedings of the 8th International Workshop on Artificial Intelligence and Statistics, Key West, FL, USA.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3