Three-Dimensional Segmentation Assisted with Clustering Analysis for Surface and Volume Measurements of Equine Incisor in Multidetector Computed Tomography Data Sets

Author:

Borowska Marta1ORCID,Jasiński Tomasz2ORCID,Gierasimiuk Sylwia1,Pauk Jolanta1ORCID,Turek Bernard2ORCID,Górski Kamil2ORCID,Domino Małgorzata2ORCID

Affiliation:

1. Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Białystok University of Technology, 15-351 Bialystok, Poland

2. Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland

Abstract

Dental diagnostic imaging has progressed towards the use of advanced technologies such as 3D image processing. Since multidetector computed tomography (CT) is widely available in equine clinics, CT-based anatomical 3D models, segmentations, and measurements have become clinically applicable. This study aimed to use a 3D segmentation of CT images and volumetric measurements to investigate differences in the surface area and volume of equine incisors. The 3D Slicer was used to segment single incisors of 50 horses’ heads and to extract volumetric features. Axial vertical symmetry, but not horizontal, of the incisors was evidenced. The surface area and volume differed significantly between temporary and permanent incisors, allowing for easy eruption-related clustering of the CT-based 3D images with an accuracy of >0.75. The volumetric features differed partially between center, intermediate, and corner incisors, allowing for moderate location-related clustering with an accuracy of >0.69. The volumetric features of mandibular incisors’ equine odontoclastic tooth resorption and hypercementosis (EOTRH) degrees were more than those for maxillary incisors; thus, the accuracy of EOTRH degree-related clustering was >0.72 for the mandibula and >0.33 for the maxilla. The CT-based 3D images of equine incisors can be successfully segmented using the routinely achieved multidetector CT data sets and the proposed data-processing approaches.

Funder

National Science Centre, Poland

Polish Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3