CXCR4 Recognition by L- and D-Peptides Containing the Full-Length V3 Loop of HIV-1 gp120

Author:

Zhu Ruohan1,Sang Xiaohong2,Zhou Jiao2,Meng Qian1,Huang Lina S. M.3,Xu Yan2,An Jing3,Huang Ziwei12

Affiliation:

1. School of Life Sciences, Tsinghua University, Beijing 100084, China

2. Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China

3. Division of Infectious Diseases and Global Public Heath, Department of Medicine, School of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA

Abstract

Human immunodeficiency virus-1 (HIV-1) recognizes one of its principal coreceptors, CXC chemokine receptor 4 (CXCR4), on the host cell via the third variable loop (V3 loop) of HIV-1 envelope glycoprotein gp120 during the viral entry process. Here, the mechanism of the molecular recognition of HIV-1 gp120 V3 loop by coreceptor CXCR4 was probed by synthetic peptides containing the full-length V3 loop. The two ends of the V3 loop were covalently linked by a disulfide bond to form a cyclic peptide with better conformational integrity. In addition, to probe the effect of the changed side-chain conformations of the peptide on CXCR4 recognition, an all-D-amino acid analog of the L-V3 loop peptide was generated. Both of these cyclic L- and D-V3 loop peptides displayed comparable binding recognition to the CXCR4 receptor, but not to another chemokine receptor, CCR5, suggesting their selective interactions with CXCR4. Molecular modeling studies revealed the important roles played by many negative-charged Asp and Glu residues on CXCR4 that probably engaged in favorable electrostatic interactions with the positive-charged Arg residues present in these peptides. These results support the notion that the HIV-1 gp120 V3 loop-CXCR4 interface is flexible for ligands of different chiralities, which might be relevant in terms of the ability of the virus to retain coreceptor recognition despite the mutations at the V3 loop.

Funder

Tsinghua-Peking Joint Center for Life Sciences

NIH

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3