Exploration and Research of Human Identification Scheme Based on Inertial Data

Author:

Gao Zhenyi,Sun Jiayang,Yang HaotianORCID,Tan Jiarui,Zhou BinORCID,Wei QiORCID,Zhang RongORCID

Abstract

The identification work based on inertial data is not limited by space, and has high flexibility and concealment. Previous research has shown that inertial data contains information related to behavior categories. This article discusses whether inertial data contains information related to human identity. The classification experiment, based on the neural network feature fitting function, achieves 98.17% accuracy on the test set, confirming that the inertial data can be used for human identification. The accuracy of the classification method without feature extraction on the test set is only 63.84%, which further indicates the need for extracting features related to human identity from the changes in inertial data. In addition, the research on classification accuracy based on statistical features discusses the effect of different feature extraction functions on the results. The article also discusses the dimensionality reduction processing and visualization results of the collected data and the extracted features, which helps to intuitively assess the existence of features and the quality of different feature extraction effects.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metering Fault Diagnosis Model Based on Deep Feature Fitting Network with Mixture of Experts;Lecture Notes in Electrical Engineering;2024

2. Analysis of fNIRS as a Biometric Modality;2023 IEEE International Joint Conference on Biometrics (IJCB);2023-09-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3