Abstract
The textural characteristics of rocks influence their petrophysical and mechanical properties. Such parameters largely control rock mass stability. The ability to evaluate both immediate and long-term rock behaviors based on the interaction between various parameters of rock texture, petrophysical and mechanical properties is therefore crucial to many geoengineering facilities. However, due to the common lack of high-quality core samples for geomechanics and rock texture laboratory tests, single and multivariable regression analyses are conducted between mechanical properties and textural characteristics based on experimental test data. This study presents a review of how rock texture characteristics influence the geomechanical properties of a rock, and summarizes the regression equations between two aspects. More specifically, a review of the available literature on the effects of mineralogy, grain size, grain shape, packing density, foliation index, porosity, degree of weathering, and other rock physical characteristics on geomechanics is presented. Similarly, a review of the literature discussing the failure criteria of anisotropic rocks, both continuous and discontinuous, is also presented. These reviews are accompanied by a comparison of the fundamentals of these methods, describing their equations and discussing their advantages and disadvantages. This exercise has the objective of providing better guidelines on how to use these criteria, allowing for safer underground excavations via an improved understanding of how rock texture parameters affects the mechanical behavior of rocks.
Funder
Natural Sciences and Engineering Research of Canada
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献