Post-Wildfire Debris Flows in Montecito, California (USA): A Case Study and Empirically Based Debris Volume Estimation

Author:

KC Diwakar1,Hu Liangbo1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Toledo, Toledo, OH 43560, USA

Abstract

Wildfires have a strong influence on various geotechnical and hydraulic properties of soils and sediments, which may become more vulnerable to landslides or debris flows. In the present study, a case investigation of the 2018 post-wildfire debris flows in Montecito, California, USA, was conducted, with a focus on the wildfire-affected areas and debris volume estimation. Significant debris were deposited around four major creeks, i.e., Montecito Creek, San Ysidro Creek, Buena Vista Creek, and Romero Creek in January, 2018, one month after the Thomas fire. Satellite images utilizing remote sensing techniques and geographic information system (GIS) data were analyzed to identify areas affected by the wildfire. Relevant data, including the slope, catchment area, and rainfall were used in two empirical models to estimate the debris volumes around the four creeks. As compared with field observation, each debris volume estimated with these empirical models was within the same order of magnitude. The debris volumes were generally underestimated when using the rainfall recorded at the Montecito Weather Station; the estimates considerably improved with the rainfall record from the Doulton Tunnel Station. The results showed that, overall, such empirical approaches are still of benefit for engineering practice, as they are capable of offering first-order approximations. The accuracy and availability of rainfall data are critical factors; the rainfall data in mountainous areas are generally higher than in the low lands, and consequently were more suitable for debris volume estimation in the present study, where the debris flows typically occurred in areas with steep slopes and at higher elevations.

Publisher

MDPI AG

Subject

General Medicine

Reference51 articles.

1. (2022, January 13). National Centers for Environmental Information (NCEI). Wildfires—Annual 2021, Available online: https://www.ncdc.noaa.gov/sotc/fire/202113.

2. Large California wildfires: 2020 fires in historical context;Keeley;Fire Ecol.,2021

3. Spatial and temporal pattern of wildfires in California from 2000 to 2019;Li;Sci. Rep.,2021

4. Effects of wildfire on soils and watershed processes;Ice;J. For.,2004

5. Effects of fire on properties of forest soils: A review;Certini;Oecologia,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3