Affiliation:
1. WSP, 3 Wellington Pl, Leeds LS1 4AP, UK
2. Faculty of Science and Engineering, School of Architecture and the Built Environment, University of Wolverhampton, Wolverhampton WV1 1LY, UK
3. School of Computer Science, University of Hull, Hull HU6 7RX, UK
Abstract
Sand is a particulate material but is treated as a continuum solid in some engineering analyses. This approach is proven to be acceptable when dealing with geotechnical structures, provided an adequate factor of safety is applied so that there is no risk of failure. However, the continuum approach does not account for the effect of interparticle forces on the micro–macro behaviour of sand. Sand could be modelled as a particulate material using the discrete element method (DEM), taking into account its discrete nature. This paper shows how the microscopic contact properties between the idealised sand particles influence the macro-mechanical behaviour, highlighting the development of the fabric as the soil approaches failure. Thirty DEM biaxial tests were performed to study the sensitivity of the macro–micro mechanical properties of sand to the inter-particle properties of an idealised sand particle. The conditions of these simulations were the same (e.g., particle size distribution, number of particles, porosity after radius enlargement, boundary conditions, and rate of loading). The sensitivity of the pre-peak, peak, and post-peak behaviour of these simulations to the inter-particle properties of an idealised sand particle was studied. Two extra DEM biaxial tests under different confining pressures were performed to verify the cohesionless nature of the synthetic material used for this study. Since a two-dimensional DEM is used for this study, a detailed approach to interpret the results assuming either a plane strain or a plane stress situation was discussed. This study highlighted the critical inter-particle properties and the range over which these influence macro-mechanical behaviour. The results show that Young’s modulus is mainly dependent on the normal contact stiffness, and peak stress and the angle of internal friction are greatly dependent on the inter-particle coefficient of friction, while Poisson’s ratio and volumetric behaviour of particulate sand are dictated mainly by shear contact stiffness. A set of relationships were established between inter-particle properties and macro-machinal parameters such as Young’s modulus, Poisson’s ratio, and angle of internal friction. The elastoplastic parameters obtained from these tests are qualitatively in agreement with the typical medium and dense sand behaviour.