Author:
Akehashi Hiroki,Takewaki Izuru
Abstract
Critical responses are investigated for nonlinear base-isolated buildings considering soil–structure interaction under near-fault ground motions and long-duration ground motions. A double impulse and a multi impulse are employed to simulate the nonlinear critical responses of the models under such ground motions. The base-isolation story is assumed to consist of lead rubber bearings and to have a bilinear force–deformation relation. Two types of critical timings for a MDOF building model supported by a swaying-rocking spring-dashpot system are derived: (1) the timing that maximizes the total input energy to the whole system and (2) the timing that maximizes the instantaneous input energy to the base-isolated building excluding the swaying-rocking system. These two types of critical timings are compared through numerical examples. Finally, time-history response analyses were conducted under the critical double impulse, the corresponding one-cycle sine wave, and the critical multi impulse. The effect of the soil–structure interaction on the maximum responses of the nonlinear base-isolated building is clarified.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献