Abstract
Weak and weathered rocks are well known for their sensitivity to changes in moisture content. Degrading behavior is common in weak rocks with moisture-sensitive mineral components and present numerous stability problems. The slake durability is a measure of the resistance to weakening and disintegration of rock materials which quantitatively distinguishes durable from non-durable rock materials. Several rock material parameters interact on the process of disintegration when exposed to cyclic moisture changes, whereby the content of clay is believed to play a major role. This manuscript evaluates the overall material composition of flysch and serpentinite rocks cored from the wall of the shotcrete-lined headrace tunnel of a hydropower project, including minerals, structure, porosity, the presence of micro-discontinuities, and swelling potential, and links these properties to the slake durability. Further, the different methods used to assess compositional features affecting the durability of weak rocks are evaluated and discussed. The manuscript argues that the mineralogical composition and microstructures present in the intact rock and the content of moisture-sensitive constituents, as swelling clays, control the long-term durability of weak rock material. It is demonstrated that XRD assessments are not sufficient to detect the content of brucite and swelling components, and that methods as thin section and SEM analyses should be carried out in the assessment of weak and weathered rock mass.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献