Comparative Analysis of Non-Pneumatic Tire Spoke Designs for Off-Road Applications: A Smoothed Particle Hydrodynamics Perspective

Author:

Sidhu Charanpreet1ORCID,El-Sayegh Zeinab1ORCID

Affiliation:

1. Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON L1G 0C5, Canada

Abstract

This study explores the development of a terramechanics-based model for non-pneumatic tire–terrain interaction, focusing on different spoke designs. The research investigates how four spoke shapes (honeycomb, modified honeycomb, re-entrant honeycomb, and straight spokes) affect non-pneumatic tire performance in off-road conditions. Using the finite element method (FEM) to model non-pneumatic tires, and smoothed-particle hydrodynamics (SPH) to model dry, loose soil, simulations were conducted to replicate real-world loading conditions. This study utilizes virtual environment solution finite element analysis software to examine the interaction between a non-pneumatic tire and dry, loose soil, with a focus on calculating longitudinal and vertical forces. These forces play a pivotal role in determining the motion resistance coefficient. The results show distinct variations in the motion-resistance coefficients among the spoke designs on dry, loose soil. This analysis helps to identify the spoke configurations that optimize energy efficiency and fuel consumption. By comparing and evaluating the four spoke designs, this study shows the effect of spoke design on tire motion resistance. This study concluded that the modified honeycomb spoke design is the most stable and the least sensitive to operating conditions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3